Finding Rational Points on Elliptic Curves Using 6-descent and 12-descent
نویسنده
چکیده
We explain how recent work on 3-descent and 4-descent for elliptic curves over Q can be combined to search for generators of the Mordell-Weil group of large height. As an application we show that every elliptic curve of prime conductor in the SteinWatkins database has rank at least as large as predicted by the conjecture of Birch and Swinnerton-Dyer.
منابع مشابه
A descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملar X iv : m at h / 06 06 00 3 v 1 [ m at h . N T ] 3 1 M ay 2 00 6 RATIONAL POINTS ON ELLIPTIC CURVES
We consider the structure of rational points on elliptic curves in Weierstrass form. Let x(P ) = AP /B 2 P denote the xcoordinate of the rational point P then we consider when BP can be a prime power. Using Faltings’ Theorem we show that for a fixed power greater than 1, there are only finitely many rational points. Where descent via an isogeny is possible we show, with no restrictions on the p...
متن کاملun 2 00 6 RATIONAL POINTS ON ELLIPTIC CURVES GRAHAM
We consider the structure of rational points on elliptic curves in Weierstrass form. Let x(P ) = AP /B 2 P denote the xcoordinate of the rational point P then we consider when BP can be a prime power. Using Faltings’ Theorem we show that for a fixed power greater than 1, there are only finitely many rational points with this property. Where descent via an isogeny is possible we show, with no re...
متن کاملElliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer
1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کامل